1

#### **Fundamentals of Solid State Physics**

# **Metals and Insulators**

## Xing Sheng 盛兴

Department of Electronic Engineering Tsinghua University <u>xingsheng@tsinghua.edu.cn</u>



## **Electronic Properties of Materials**





**Metal** 



**SiO** 



Silicon

5

## **Formation of Band Gaps**



### **Formation of Band Gaps**



discrete orbitals are combined to form quasi-continuous bands

#### **Formation of Band Gaps**



#### **Fill electrons into these bands**

**Q:** Is it a metal or insulator?

#### **State vs. Electron**

#### energy state / level / orbital 能态 / 能级 / 轨道



#### electron / phonon / ... 电子 / 声子 / ...



#### Number of states are infinite. Number of electrons are finite.

### **Energy States**

#### How many energy states in each band?





FBZ - First Brillouin Zone *N* - total number of states *n* = *L/a* - number of primitive cells
2 - spin up and down

**Q: How about 2D and 3D cases?** 10

Each atom has one valence electron (Na, K, ...)



11





 $\sigma \mathbf{E}$ 

when *E* = 0, *v* = 0 no current when  $E \neq 0$ , v > 0electric current

#### **Question:**

#### A Na atom has 11 electrons. [1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>] 3s<sup>1</sup> Where are the rest 10 electrons?

#### Answer:

Localized electrons have lower energies. All the lower bands are completely full. So they have no contribution to conductivity.



## **1D Chain of** *Divalent* Atoms

Each atom has *two* valence electrons (Mg, Ca, ...)



### **1D Chain of** *Divalent* Atoms



### Metal vs. Insulator

#### Metals and Insulators are fundamentally different

- Insulators are not just "bad" metals
- An insulator has all bands completely filled or empty
- A metal has partially filled bands





Insulator

Metal

## **1D Chain of** *Trivalent* **Atoms**

Each atom has *three* valence electrons (AI, Ga, ...)



## **1D Chain of** *Trivalent* **Atoms**



## **1D Chain of** *Quadrivalent* **Atoms**

3

Each atom has *four* valence electrons (C, Si, ...)

2



<u>k</u>r

0

 $\pi/a$ 

 $-\pi/a$ 

electron

## **1D Chain of** *Divalent* Atoms

Each atom has *two* valence electrons (Mg, Ca, ...)



**Assume a square lattice in the reciprocal space** 



#### **2D case of** *Monovalent* **Atoms**

Each atom has one valence electrons (Na, K, ...)



### 2D case of *Divalent* Atoms

Each atom has *two* valence electrons (Mg, Ca, ...)



#### **2D case of** *Divalent* **Atoms**

Each atom has *two* valence electrons (Mg, Ca, ...)



### **2D Fermi Surface**

#### simple square



https://www.physics.upenn.edu/~mele/archives/webpage518/phys518.s03/log.html 26

### **3D Fermi Surface**

#### simple cubic



#### generated with a tight binding model: http://home.cc.umanitoba.ca/~loly/fermisurf2.html

## **3D Fermi Surface – More Examples**





http://www.phys.ufl.edu/fermisurface/

Fermi surface is the surface in reciprocal space which separates occupied from unoccupied electron states at T = 0 K.

### **Metals in the Periodic Table**



| Се | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | Lu |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |

https://www.angelo.edu/faculty/kboudrea/periodic/physical\_metals.htm 29

## Solid Hydrogen is also Metallic

#### Metallic hydrogen only exists under very high pressure



#### https://en.wikipedia.org/wiki/Metallic\_hydrogen



Only electrons near the Fermi surface contribute to electrical (and thermal) conductivity in metals

$$\mathbf{\sigma} = e^2 \cdot \tau(E_F) \cdot \int_{\text{occupied}} \frac{2d\mathbf{k}}{(2\pi)^3} \cdot \frac{1}{\mathbf{M}^*(\mathbf{k})}$$

Ashcroft & Mermin, Chap.13

32



Only electrons near the Fermi surface contribute to electrical (and thermal) conductivity in metals

#### compare

$$\sigma = ne\frac{v}{E} = ne\mu = \frac{ne^2\tau}{m^*}$$



Only electrons near the Fermi surface contribute to electrical (and thermal) conductivity in metals



$$\sigma = ne\frac{v}{E} = ne\mu = \frac{ne^2\tau}{m^*}$$

|                              | Classical                       | Quantum<br>electrons near<br>Fermi surface<br>(depend on <i>E</i> field) |  |  |  |
|------------------------------|---------------------------------|--------------------------------------------------------------------------|--|--|--|
| electron<br>density <i>N</i> | all valence                     |                                                                          |  |  |  |
| $\mu \tau$                   | electrons                       |                                                                          |  |  |  |
| velocity $\mathcal{V}$       | average (depend on temperature) | Fermi velocity $ {oldsymbol {\cal V}}_F $                                |  |  |  |
| mass M                       | free electron $\mathcal{M}_0$   | effective mass $\mathcal{M}^{*}_{35}$                                    |  |  |  |

## **3D Fermi Surface**



#### spherical shape close to free electrons

#### http://www.phys.ufl.edu/fermisurface/ 36

## **3D Fermi Surface**



#### spherical shape close to free electrons

#### http://www.phys.ufl.edu/fermisurface/ 37

#### sodium (BCC)





**First BZ** 

**Fermi Surface** 

#### sodium (BCC): band structure





#### copper (FCC)





#### First BZ

**Fermi Surface** 

#### copper (FCC): band structure





#### **Example - Carbon**



### **Example - Carbon**



#### For metals

- □ *n* and *m*<sup>\*</sup> have weak dependence on *T*
- **\Box**  $\tau$  has a strong dependence on T
- **n** higher *T* ---> shorter *l* and  $\tau$  ---> smaller  $\mu$  ---> smaller  $\sigma$

• At T = 0 K, perfect metals should have no collision, infinite *l* and  $\tau \rightarrow$  infinite  $\sigma$ 

Resistivity originates from the collision with imperfect crystals



Resistivity originates from the collision with imperfect crystals



 Resistivity originates from the collision with imperfect crystals

$$\rho(T) = \rho_0 [1 + \alpha \Delta T]$$



<u>materials/electrical-conduction-in-metals-and-alloys-</u> <u>electrical-properties-of-materials-part-2/</u>

### **Summary**

#### Electronic properties of solids depend on

- **band structure**
- electron density

#### also depend on

- **defects**
- **temperature**
- electric field
- ••••



#### electron

#### **Summary**



# Thank you for your attention